Optical switch probes and optical lock-in detection (OLID) imaging microscopy: high-contrast fluorescence imaging within living systems.
نویسندگان
چکیده
Few to single molecule imaging of fluorescent probe molecules can provide information on the distribution, dynamics, interactions and activity of specific fluorescently tagged proteins during cellular processes. Unfortunately, these imaging studies are made challenging in living cells because of fluorescence signals from endogenous cofactors. Moreover, related background signals within multi-cell systems and intact tissue are even higher and reduce signal contrast even for ensemble populations of probe molecules. High-contrast optical imaging within high-background environments will therefore require new ideas on the design of fluorescence probes, and the way their fluorescence signals are generated and analysed to form an image. To this end, in the present review we describe recent studies on a new family of fluorescent probe called optical switches, with descriptions of the mechanisms that underlie their ability to undergo rapid and reversible transitions between two distinct states. Optical manipulation of the fluorescent and non-fluorescent states of an optical switch probe generates a modulated fluorescence signal that can be isolated from a larger unmodulated background by using OLID (optical lock-in detection) techniques. The present review concludes with a discussion on select applications of synthetic and genetically encoded optical switch probes and OLID microscopy for high-contrast imaging of specific proteins and membrane structures within living systems.
منابع مشابه
Reversible optical control of cyanine fluorescence in fixed and living cells: optical lock-in detection immunofluorescence imaging microscopy.
Optical switch probes undergo rapid and reversible transitions between two distinct states, one of which may fluoresce. This class of probe is used in various super-resolution imaging techniques and in the high-contrast imaging technique of optical lock-in detection (OLID) microscopy. Here, we introduce optimized optical switches for studies in living cells under standard conditions of cell cul...
متن کاملPhotosynthetic Electron Transport
Bizzarri R, Serresi M, Cardarelli F, Abbruzzetti S, Campanini B, Viappiani C, Beltram F. Single amino acid replacement makes Aequorea victoria fluorescent proteins reversibly photoswitchable. J Am Chem Soc. 2010;132:85–95. Cardarelli F, Bizzarri R, Serresi M, Albertazzi L, Beltram F. Probing nuclear localization signal-importin alpha binding equilibria in living cells. J Biol Chem. 2009;284:366...
متن کاملOptical lock-in detection imaging microscopy for contrast-enhanced imaging in living cells.
One of the limitations on imaging fluorescent proteins within living cells is that they are usually present in small numbers and need to be detected over a large background. We have developed the means to isolate specific fluorescence signals from background by using lock-in detection of the modulated fluorescence of a class of optical probe termed "optical switches." This optical lock-in detec...
متن کاملHigh-Contrast Fluorescence Imaging in Fixed and Living Cells Using Optimized Optical Switches
We present the design, synthesis and characterization of new functionalized fluorescent optical switches for rapid, all-visible light-mediated manipulation of fluorescence signals from labelled structures within living cells, and as probes for high-contrast optical lock-in detection (OLID) imaging microscopy. A triazole-substituted BIPS (TzBIPS) is identified from a rational synthetic design st...
متن کاملA Thin Layer Imaging with the Total Internal Reflection Fluorescence Microscopy
Total internal reflection fluorescence microscopy (TIRFM) is an optical technique that allows imaging of a thin layer of the sample with a thickness of about 100-200 nm. It is used in science of cell biology to study cellular processes, especially near the membranes of living cells. This method is based on the total internal reflection phenomenon, where the evanescent wave is generated in the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 433 3 شماره
صفحات -
تاریخ انتشار 2011